skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thom, Christopher A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phase transformations are widely invoked as a source of rheological weakening during subduction, continental collision, mantle convection and various other geodynamic phenomena. However, despite more than half a century of research, the likelihood and magnitude of such weakening in nature remain poorly constrained. Here we use experiments performed on a synchrotron beamline to reveal transient weakening of up to three orders of magnitude during the polymorphic quartz to coesite (SiO2) and olivine to ringwoodite (Fe2SiO4) phase transitions. Weakening becomes increasingly prominent as the transformation outpaces deformation. We suggest that this behaviour is broadly applicable among silicate minerals undergoing first-order phase transitions and examine the likelihood of weakening due to the olivine-spinel, (Mg,Fe)2SiO4, transformation during subduction. Modelling suggests that cold, wet slabs are most susceptible to transformational weakening, consistent with geophysical observations of slab stagnation in the mantle transition zone beneath the western Pacific. Our study highlights the importance of incorporating transformational weakening into geodynamic simulations and provides a quantitative basis for doing so. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Abstract Plastic deformation of olivine at relatively low temperatures (i.e., low‐temperature plasticity) likely controls the strength of the lithospheric mantle in a variety of geodynamic contexts. Unfortunately, laboratory estimates of the strength of olivine deforming by low‐temperature plasticity vary considerably from study to study, limiting confidence in extrapolation to geological conditions. Here we present the results of deformation experiments on olivine single crystals and aggregates conducted in a deformation‐DIA at confining pressures of 5 to 9 GPa and temperatures of 298 to 1473 K. These results demonstrate that, under conditions in which low‐temperature plasticity is the dominant deformation mechanism, fine‐grained samples are stronger at yield than coarse‐grained samples, and the yield stress decreases with increasing temperature. All samples exhibited significant strain hardening until an approximately constant flow stress was reached. The magnitude of the increase in stress from the yield stress to the flow stress was independent of grain size and temperature. Cyclical loading experiments revealed a Bauschinger effect, wherein the initial yield strength is higher than the yield strength during subsequent cycles. Both strain hardening and the Bauschinger effect are interpreted to result from the development of back stresses associated with long‐range dislocation interactions. We calibrated a constitutive model based on these observations, and extrapolation of the model to geological conditions predicts that the strength of the lithosphere at yield is low compared to previous experimental predictions but increases significantly with increasing strain. Our results resolve apparent discrepancies in recent observational estimates of the strength of the oceanic lithosphere. 
    more » « less